Mapping a genetic world beyond genes
September 12, 2012
Gary Null

Most of the DNA alterations that are tied to disease do not alter protein-coding genes, but rather the "switches" that control them. Characterizing these switches is one of many goals of the ENCODE project - a sweeping, international effort to create a compendium of all of the working parts of the human genome that have not been well studied or well understood.

The function of the vast majority of the human genome has remained largely unknown, but the Encyclopedia of DNA Elements (ENCODE) project, launched in 2003, set out to change that. Comprised of more than 30 participating institutions, including the Broad Institute, the ENCODE Project Consortium has helped to ascribe potential biochemical function to a large fraction of the non-coding genome.

This work has revealed elements that act like dimmer switches, subtly turning up or down a gene's activity and influencing what parts of the genome are utilized in different kinds of cells. The team characterized and mapped out the locations of thousands of these switches and signals. More than 30 papers detailing these results appear online in Nature, Science, Genome Research, and Genome Biology this week.

"With these maps in hand, we can begin to understand why genetic variants that land in the annotated regions may predispose people to disease," said Brad Bernstein, a senior associate member at the Broad Institute and an associate professor of pathology at Massachusetts General Hospital (MGH) and Harvard Medical School. Bernstein is also a principal investigator in the ENCODE Consortium.

Read more.. http://www.terradaily.com/reports/Mapping_a_genetic_world_beyond_genes_999.html

Article originally appeared on The Gary Null Blog (http://www.garynullblog.com/).
See website for complete article licensing information.